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Abstract—Real networks consisting of social contacts do not
possess static connections. That is, social connections may be time
dependent due to a variety of individual behavioral decisions
based on current network links between people. Examples of
adaptive networks occur in epidemics, where information about
infectious individuals may change the rewiring of healthy people,
or in the recruitment of individuals to a cause or fad, where
rewiring may optimize recruitment of susceptible individuals. In
this talk, we will review some of the dynamical properties of
adaptive and random networks, such as bifurcation structure
and the size of fluctuations. We will also show how adaptive
networks predict novel phenomena as well as yield insight into
new controls.

Applying a new transition rate approximation that incorpo-
rates link dynamics, we extend the theory of large deviations
to stochastic network extinction to predict extinction times. In
particular, we use the theory to find the most probable paths
leading to extinction. We then apply the methodology to network
models and discover how mean extinction times scale with
network parameters in Erdos-Renyi networks. The results are
shown to compare quite well with Monte Carlo simulations of the
network in predicting both the most optimal paths to extinction
and mean extinction times.

I. INTRODUCTION

Network models when coupled with individual social behav-

ior have increased the understanding of the dynamics of pop-

ulations. Hardware and technology coupling with populations

have shown how society can understand network phenomena

such as information spreading dynamics, epidemiology, and

terrorist cell analysis [1], [2], [3], [4], [5], [6].

Much previous work on social dynamics assumed homo-

geneous populations, where real social structure was lacking.

Most of these models were compartmental and were similar

to mean field models of stochastic simulations. Modeling of

social interaction that constantly arises is one of mass action,

which accounts for one or social contacts between individuals.

It is most evident in the modeling of epidemics, where

infection spread in a population arises from direct contact

between healthy and sick individuals. Another mass action

modeling class of interest to defense is that of recruitment of

susceptible individuals by the terrorist cell networks [6].

One current and future trend of network modeling is to con-

sider adaptive behavior, or social response in the population to

information about a current or future threat [7], [8], [9], [10].

Previously, we discussed some of the adaptive network models

used in infectious disease and terrorist recruitment modeling,

and how individual social adaptation may change the dynamics

of the networks, which in turn alters the progression of disease

or recruitment [11].

In epidemic models where the population is well-mixed

(globally coupled individuals), extinction of infectious indi-

viduals has been shown to be affected by noise intensity and

other factors [12], [13], [14]. Moreover, since the extinct state

is typically unstable in the deterministic mean field and is

an absorbing state of a stochastic process, time scales for

extinction may be exponentially long [15]; i.e., the probability

of extinction is a decreasing exponential function [16].

Vaccination and treatment programs have been studied to

speed up the extinction of disease in well-mixed populations

[17], [18], [19]. For example, although most vaccination

schedules are designed to be administered periodically (de-

terministic) [20], [21], [22], Poisson distributed scheduling

was recently shown to be more efficient than regular treatment

schedules [23].

In network populations, outbreak extinction probabilities

have been predicted for early times when an infection has

just been introduced [24], [25]. Other studies of extinction on

networks attempt to predict whether a persistent non-extinct

state exists, such as for computer viruses in growing networks

[26] and epidemics in various network geometries (e.g., [27]).

Here we consider the problem of epidemic extinction in

stochastic and adaptive networks, and we find that the extinc-

tion process depends not just on the nodes of the network, but

also on how the links change as the system evolves. That is,

along the most probable path to extinction, we have derived

a new approximate model showing that both nodes and links

play an important role in the mean time to disease eradication.

We have introduced a novel mathematical tool so that the path

is derived constructively. (See [28] for details. In addition,

we also show how some of the network properties in an

adaptive network behave dynamically, such as time dependent

link oscillations and degree.
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Fig. 1. An example of a local transition where S → I . Notice that even
though a single S node changes to I through a contact with an infectious
node, more than one SS links convert to SI links.

II. SIS ON A RANDOM NETWORK

The specific example we will consider here is a network

of N nodes and K links, with an average degree of 2K/N .

The dynamics on the network is an SIS epidemic model,

where susceptibles capable of acquiring the disease become

infectious through a contact with an infective individual,

and become susceptible again after a recovery period. Here

we divide the population into two groups, with S denoting

susceptible individuals and I infected individuals, such that

the total population is fixed at N . The population is closed,

and there are no births and deaths. We consider the state

space of node and link numbers given by the vector X =
[NS , NI , NSS , NSI , NII ], where NA,NAB denote the number

of A nodes and AB links respectively.

We assume there are three state transitions: S → I along the

network (local); S → I globally throughout the network; and

I → S which represents recovery. These transitions all come

with rates or probabilities of the event occurring. However,

the transitions also require incremental values which designate

how many nodes and links change. For global networks, both

rates and transitions are known since the population is assumed

to be well-mixed [18]. However, for networks having local

structure, a change in a single node may result in a large

change of link numbers, as shown in Fig. 1.

One of the problems in describing dynamics for stochastic

networks is that it suffers from the curse of dimensionality

which arises from exponential growth of memory and compu-

tational requirements. However, given that we have a known

solution for the globally connected network supporting an SIS

model, we will take a perturbative approach. In doing so, we

introduce a homotopy parameter, ǫ, such that when ǫ = 0,

the solution is that of global network, and when ǫ = 1,

the solution corresponds to the network structure with local

coupling having structure, such as average degree.

We approximate the dynamics of the network by considering

transitions in links, similar to the pair-based proxy model

of [29]. We assume large but finite population size, N , and

we suppose the dynamics proceeds as a Markov process. To

complete the formulation for the network dynamics, we sup-

pose there exist M = 3 transition events with transition rates

W (X,νk) having increments νk. To model the transition

between nodes, we let p, r denote the infection and recovery

rates.The transition rates as functions of ǫ are:

W (X,ν1) = ǫpNSI

W (X,ν2) = (1− ǫ)p
2K

N

NSNI

N
W (X,ν3) = rNI ,

(1)

where transmission is along the network, global transmission,

and recovery, respectively. We have introduced the homotopy

parameter ǫ which continuously transforms the system be-

tween the global and network transmission models.

Using the logic in [28] allows us to write the transition

increments for transmission along the network, global trans-

mission, and recovery, respectively:
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[
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S
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S
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S

)
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(
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I
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(2)

III. MODELING THE OPTIMAL PATH AS A RARE EVENT

Given the specification of the transition rates and incre-

ments, the dynamics of the probability density, ρ(X, t), can

now be modeled using a master equation [16], [30], [31].

The rare events are characterized by observing the extinction

event in the tail of the probability distribution. Typically, when

observing the times for the event to occur, one sees that the

distribution of times is exponential [32]. When the population

is sufficiently large, we may assume the distribution of times

possesses such an exponential tail [15].

The rare events we are interested in are those of extinction

where the number of infected nodes goes to zero. As in the

globally coupled case (ǫ = 0), the Monte Carlo dynamics

of the network (ǫ = 1) exhibits random fluctuations about

an attracting endemic state, and then the internal fluctuations

organize in such a way as to drive the infected nodes to

extinction. We characterize the probability of an extinction

event in the large population limit and compare it to the glob-

ally coupled case. In particular, we are interested in the most

probable path and mean times to extinction. To understand

the scaling of extinction times in terms of epidemiological

parameters and network topology, we employ large deviation

theory techniques for finite populations [33], [31].

Normalizing the state space of nodes and links with respect

to N , x = X/N , we use a WKB approximation for the

probability, ρ(x, t) = A(x)exp(−NR(x, t)). To first order

in O(N−1), we derive a Hamilton-Jacobi equation, with

Hamiltonian H , and exponent R is defined as the action. The

variable p = ∂xR is the conjugate momenta of the Hamilton-

Jacobi equation, and the Hamiltonian can be written as

H(x,p) =
3

∑

k=1

w(x,νk)(e
p·νk − 1). (3)
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We analyze the system by solving the characteristic equations

ẋ = ∂pH(x,p), ṗ = −∂xH(x,p) subject to appropriate

boundary conditions. Since the action maximizes the proba-

bility of the rare event, we say the path to extinction is the

most probable or optimal path to extinction given that the

initial starting point is at the endemic state.

The boundary conditions for the characteristic equations are

given as steady state solutions of from the equations of motion

ẋ = ṗ = 0. For epidemic models in general, the distribution

is quasi-stationary and peaks at an endemic state, where the

number of new infections equals the number of recoveries

per unit time, and corresponds to the zero conjugate momenta

case. The other steady state is the extinct state which is saddle

point. However, here we find that the conjugate momenta at

this state is non-zero, since there is a non-zero probability

current at that point. The steady states of the characteristic

equation corresponding to zero conjugate momenta are those

which satisfy the deterministic epidemic model. See Fig. 2 for

a plot showing the quasi-stationarity and steady states.

Fig. 2. An example of quasi-stationary density of states. X2 on the x-axis
denotes the number of infected nodes. The endemic steady state is attracting
in the Hamiltonian equations of motion, while the extinct state where X2 = 0
is a saddle point. The conjugate momenta corresponding to the endemic state
is zero, while the momenta corresponding to the extinct state is non-zero due
to a non-zero but small probability current.

To find the optimal path, we use the iterative action mini-

mizing method (IAMM) [35] to perturb off the ǫ = 0 solution,

where the path can be analytically defined. For an all-to-

all connected graph, the links depend quadratically on the

nodes. We then use continuation as a function of ǫ to get

to the locally-coupled ǫ = 1 case. In Fig. 3, the computed

most probable path is plotted for several values of ǫ. It is

clear from Fig. 3a that the path predicted for the discretely

coupled network (ǫ = 1) is quite different from the globally

coupled disease dynamics (ǫ = 0). Note that as ǫ increases and

infection spreads primarily along the network, II connections

become more prominent because infected nodes arise next to

other infected nodes.

0 2 4 6

x 10
−4

0

0.002

0.004

0.006

0.008

0.01

L
II

I/
N

 

 

ε=0

ε=.5

ε=1

(a)

Fig. 3. (a) The most probable path projected onto the I/N versus the fraction
of II links, LII , for various ǫ values up to ǫ = 1. Parameters: p = 1.03 ×

10−4, r = 0.002 and K/N = 10. (b)The position density function of
extinction paths computed from stochastic simulations on Erdős-Rényi random
networks, projected onto the I/N versus LII axis, and overlaid with the
predicted most probable path (dashed curve). Reprinted from [28].

We compare the numerical results for our approximate

system to Monte Carlo simulations of an SIS epidemic model

on an Erdős-Rényi random network where the Monte Carlo

simulations are completed using the Gillespie algorithm [36]

with initial conditions at the endemic steady state. For the

networks, 1000 trajectories are run to extinction, 100 for

each of 10 randomly generated network geometries. From

the pre-history of paths that go extinct, a density function is

created from the prehistory of these paths, and a clear local

maximum can be identified. This maximum corresponds to

the most likely trajectory connecting the endemic and extinct

points, and is shown in the density plots of Fig. 3b. Using the

IAMM to compute the most probable path and comparing it

to the prehistory of extinction events on stochastic networks,

as shown by the dashed curve in, demonstrates that our model

approximates well the path to extinction.

IV. MEASURING MEAN EXTINCTION TIMES

From Monte-Carlo simulations, we can also approximate

the mean lifetime of the disease from endemic state until

extinction, where we assume that the mean lifetime τ is

inversely proportional to the probability of the event; i.e.,

τ = B(x)eNR. The pre-factor may depend on all parameters

for a given problem, but in general scales as 1√
N

for suffi-

ciently large N . For our purposes, the pre-factor can be found

analytically for ǫ = 0,

B =

√

2π
Reff

0

N

r(Reff
0

− 1)2
, (4)

where the effective reproductive number is given as Reff
0

=
2pK/(Nr) [37], [23].

In Fig. 4, we plot the log of the mean lifetimes of the

disease compared to our numerical predictions of the action,

incorporating the pre-factor in Eq. 4. Because it is analytically

unavailable to find the pre-factor for ǫ > 0, we assume that,

since the action does not vary greatly with respect to ǫ, the

change to the pre-factor will be negligible. Thus we can use

the same pre-factor for the case when ǫ = 1.
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Figure 4a shows the log of the mean lifetime versus popu-

lation for Monte Carlo simulations of the disease on discrete

networks (ǫ = 1) and the mean-field prediction generated

by the IAMM, and scaled by the analytical pre-factor, i.e.,

ln τ/N ≈ R+lnB/N . Because the action R is invariant with

respect to N , the scaling depends entirely on the pre-factor,

and the good agreement between our analytical approximation

and stochastic simulations shows that our approximation of

the pre-factor is sufficient to capture the dynamics. Figure

4b varies the infection rate p, and shows the lifetime scaling

predicted by our model and the stochastic simulations as

the probability of disease propagation along the network is

increased.
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Fig. 4. a) ln(τ)/N versus N predictions (solid curve) compared to mean over
1000 realizations of extinction on a random network (circles) for r = 0.002,
p = 1.03× 10−4, K/N = 10, and ǫ = 1. b) ln(τ)/N versus p predictions
(solid curve) compared to mean over 1000 network extinction events (circles)
for r = 0.002, K = 105, N = 104, and ǫ = 1. Note there is no fitting
parameter in the theoretical plots. Reprinted from [28].

V. EXTINCTION ON ADAPTIVE NETWORKS

As another future network application, we can consider the

extinction dynamics of coupled systems which are adaptive.

(See [8] for details and further results regarding the effects

of fluctuations.) In real networks nodes and links change in

time, in that node dynamics affects network geometry, and in

turn geometry affects node dynamics. This leads to a feedback

mechanism since links depend on nodes and vice versa.

For example, in a network in which the population consists

now of suseptible, infectious and recovered individuals, there

exists adaptation in which those non-infected nodes coming in

contact with infectious nodes rewire away to a non-infectious

node with rate w. The rewiring rules specifying transitions

between states and parameter definitions are shown in Fig. 5.

The effect of rewiring adaptively has a significant effect not

just on the node dynamics, but the entire bifurcation structure.

In Fig. 6, the left panels show that when the rewiring rate is

non-zero, new states are created, as well as a bi-stable region

where both endemic and extinct states are attracting. The right

panel shows how the degree distributions change from the non-

adaptive case when rewiring is turned on.

In terms of node and link dynamics, the degree appears to

have strong oscillations. For a given node chosen at random,

we can see how the adaptivity affects the network as a function

of time, as in Fig. 7. There are strong oscillations in the degree

on average, and it is easy to see infected node lose connections

rapidly, while the recovered and susceptible nodes gain links as

Fig. 5. Adaptive network dynamical rules for an SIRS model. Here we
introduce a recovery variable R. The new transition rate for R → S is
the re-susceptibility rate q. The rewiring rate w acts to change IS or IR
to SS, SR or RR links.
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Fig. 6. The effect of rewiring in an adaptive network using avoidance
behavior. The left panels show the fraction of infectious individuals I in a
finite population as a function of the infection rate p. (a) Fixed contact network
(no rewiring). (b) Rewiring is turned on, causing the emergence of bistable
behavior. Solid (dashed) lines are stable (unstable) mean field predictions,
and dots correspond to averaged Monte Carlo runs. The right panels show
the degree distribution (a) without rewiring and (b) with rewiring. Light
grey denotes infectious, black susceptible, and dashed recovered individual
fractions. Reprinted from [8].

time evolves. The oscillatory nature of the degree is probably

responsible for the existence of oscillatory behavior for certain

regions of parameters [38].

It has been observed that when a network going to extinction

is adaptive, vaccination controls work synergistically with

adaptivity to improve the elimination of infected nodes [39].

A model of an adaptive SIVS network is shown schematically

in Fig. 8. It is similar to the previous model, except that the

recovered class is replaced with a vaccinated class. The other

change is in vaccine control where the parameter to vaccinate

a percentage of the susceptible population is applied as a

Poisson process. That is, control is discontinuous in time, and
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Fig. 7. Node connections are shown when the network is adaptive. An
example of the degree of a single node chosen at random is shown as a
function of time. Due to rewiring, infected nodes lose links over time, while
recovered and susceptible nodes gain links. Infected nodes thus become more
isolated.

Fig. 8. An SIVS model of an adaptive network with vaccination. The new
variable here is V , which represents the vaccination class. Parameters are
shown in the box. Vaccination is assumed not to be permanent, so a return
to the susceptible class may occur at rate q. The vaccine control is time
dependent, and is a Poisson process having mean frequency ν. A fixed
fraction, A, of the population of the susceptibles is vaccinated. The rewiring
rate w is defined as before moving links between infected and non-infected
nodes to links between non-infected nodes.

the percentage A of the susceptible population is vaccinated

with mean frequency ν. The effects of combining vaccination

with rewiring behavior were shown to be highly effective in

that a reduction of between two and three orders of magnitude

of vaccine resources were necessary to achieve the same mean

extinction times for the non-adaptive case.

In terms of the degree dynamics for both nodes and links,

and example is shown when the vaccination rate is applied

using the Poisson process in Fig. 9. Here 10 per cent of the

susceptible population was vaccinated with a mean frequency

of ν = 0.0005. Finite vaccine pulses are shown by green x′s.

One can see a dramatic change in both infected node fraction

and its degree on the path to extinction.

VI. CONCLUSIONS

We have presented a method for predicting extinction in

stochastic network systems by analyzing a pair-based proxy

model. The optimal paths to extinction were found, allowing

the prediction of mean extinction times. Tracking the path to

Fig. 9. Node and degree changes in an adaptive network with vaccine controls
in an SIVS mode along the path to extinction of I nodes. Poisson distributed
vaccine pulses are designated by green crosses. The top panel shows the
evolution of node fraction for each of the nodes for S, I, V . The bottom
panel shows the degree shedding of the I nodes as the disease goes extinct
in red. The blue curve is the total of S and V nodes. The parameters are as
shown in the lower right part of the figure.

extinction was aided by perturbing from the known path in a

well-mixed system of individuals in a large population.

We also considered the dynamic network structure of adap-

tive networks. We showed how a strong oscillatory degree

dynamic arises due to the rewiring away from infective nodes.

In the presence of vaccine controls, the degree was also shown

to evolve in a special way when the vaccination is a Poisson

process. Here we applied vaccine to susceptible nodes, which

tend to have a higher degree due to the rewiring away from

infected nodes. In general, vaccination of high degree nodes

provides better protection. In contrast to the adaptive network,

a static network has higher degree infected nodes which are

not vaccinated.

In the future, the pair-based proxy method will be extended

to systems such as epidemics on adaptive networks (e.g.,

[38]) by adding network adaptation to the list of transitions

(Eqs. 2 and 1). Vaccination transitions can also be added, as

in [39]. More generally, this pair-based proxy method will be

applicable to predict extinction in any network system that is

well described by a pair-based approximation for dynamics

of nodes and links, including games on networks (e.g., [40],

[41]).

Further, we expect that our method of continuously varying

a parameter while tracking the path to extinction will be useful

in other contexts where finding the path a priori is difficult due

to high dimensionality, as in finite mode projection of partial

differential equations [42], and pattern switching along paths

in continuous systems [43].
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